Causal mediation analysis in cluster-randomized trials (CRTs) is essential for explaining how cluster-level interventions affect individual outcomes, yet it is complicated by interference, post-treatment confounding, and hierarchical covariate adjustment. We develop a Bayesian nonparametric framework that simultaneously accommodates interference and a post-treatment confounder that precedes the mediator. Identification is achieved through a multivariate Gaussian copula that replaces cross-world independence with a single dependence parameter, yielding a built-in sensitivity analysis to residual post-treatment confounding. For estimation, we introduce a nested common atoms enriched Dirichlet process (CA-EDP) prior that integrates the Common Atoms Model (CAM) to share information across clusters while capturing between- and within-cluster heterogeneity, and an Enriched Dirichlet Process (EDP) structure delivering robust covariate adjustment without impacting the outcome model. We provide formal theoretical support for our prior by deriving the model's key distributional properties, including its partially exchangeable partition structure, and by establishing convergence guarantees for the practical truncation-based posterior inference strategy. We demonstrate the performance of the proposed methods in simulations and provide further illustration through a reanalysis of a completed CRT.


翻译:聚类随机试验中的因果中介分析对于解释集群层面干预如何影响个体结果至关重要,然而该分析受到干扰、后处理混杂以及分层协变量调整的复杂影响。我们开发了一个贝叶斯非参数框架,该框架能同时处理干扰以及发生在中介变量之前的后处理混杂因素。识别过程通过多元高斯Copula实现,该Copula用单一依赖参数替代跨世界独立性假设,从而形成对残余后处理混杂的内置敏感性分析。在估计方面,我们引入了一种嵌套的公共原子增强狄利克雷过程先验,该先验整合了公共原子模型以在集群间共享信息,同时捕捉集群间和集群内的异质性;其增强狄利克雷过程结构能在不影响结果模型的前提下实现稳健的协变量调整。我们通过推导模型的关键分布性质(包括其部分可交换划分结构)以及为基于实际截断的后验推断策略建立收敛性保证,为本先验提供了正式的理论支持。我们通过模拟实验展示了所提方法的性能,并通过对一项已完成的聚类随机试验的再分析提供了进一步的例证。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员