Sampling from generative models has become a crucial tool for applications like data synthesis and augmentation. Diffusion, Flow Matching and Continuous Normalizing Flows have shown effectiveness across various modalities, and rely on Gaussian latent variables for generation. For search-based or creative applications that require additional control over the generation process, it has become common to manipulate the latent variable directly. However, existing approaches for performing such manipulations (e.g. interpolation or forming low-dimensional representations) only work well in special cases or are network or data-modality specific. We propose Combination of Gaussian variables (COG) as a general purpose interpolation method that is easy to implement yet outperforms recent sophisticated methods. Moreover, COG naturally addresses the broader task of forming general linear combinations of latent variables, allowing the construction of subspaces of the latent space, dramatically simplifying the creation of expressive low-dimensional spaces of high-dimensional objects.
翻译:暂无翻译