Kernel methods have been among the most popular techniques in machine learning, where learning tasks are solved using the property of reproducing kernel Hilbert space (RKHS). In this paper, we propose a novel data analysis framework with reproducing kernel Hilbert $C^*$-module (RKHM) and kernel mean embedding (KME) in RKHM. Since RKHM contains richer information than RKHS or vector-valued RKHS (vv RKHS), analysis with RKHM enables us to capture and extract structural properties in multivariate data, functional data and other structured data. We show a branch of theories for RKHM to apply to data analysis, including the representer theorem, and the injectivity and universality of the proposed KME. We also show RKHM generalizes RKHS and vv RKHS. Then, we provide concrete procedures for employing RKHM and the proposed KME to data analysis.


翻译:在机器学习中,最受欢迎的技术之一是内核方法,在机器学习中,利用复制内核Hilbert空间(RKHS)的特性解决了学习任务。在本文中,我们提出一个新的数据分析框架,将内核Hilbert $C ⁇ $$-moule(RKHM)和内核平均嵌入(KME)复制在机载学习中。因为内核方法所含的信息比RKHS或矢量值RKHS(vv RKHS)更丰富,与皇家皇家研究中心的分析使我们能够在多变数据、功能数据和其他结构化数据中捕获和提取结构属性。我们展示了韩国皇家研究中心用于数据分析的理论分支,包括代表性定理,以及拟议的KME的主观性和普遍性。我们还展示了韩国皇家研究中心对RKHS和 vv RKHS(v RKHS)的概括性和普遍性。然后,我们提供了使用RKHM和拟议的KME数据分析的具体程序。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月20日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员