Large Language Models (LLMs) are increasingly being integrated into software development processes, with the potential to transform team workflows and productivity. This paper investigates how LLMs affect team collaboration throughout the Software Development Life Cycle (SDLC). We reframe and update a prior study with recent developments as of 2025, incorporating new literature and case studies. We outline the problem of collaboration hurdles in SDLC and explore how LLMs can enhance productivity, communication, and decision-making in a team context. Through literature review, industry examples, a team survey, and two case studies, we assess the impact of LLM-assisted tools (such as code generation assistants and AI-powered project management agents) on collaborative software engineering practices. Our findings indicate that LLMs can significantly improve efficiency (by automating repetitive tasks and documentation), enhance communication clarity, and aid cross-functional collaboration, while also introducing new challenges like model limitations and privacy concerns. We discuss these benefits and challenges, present research questions guiding the investigation, evaluate threats to validity, and suggest future research directions including domain-specific model customization, improved integration into development tools, and robust strategies for ensuring trust and security.
翻译:大型语言模型(LLMs)正日益融入软件开发流程,并具备变革团队工作流与生产力的潜力。本文研究了LLMs在整个软件开发生命周期(SDLC)中对团队协作的影响。我们基于截至2025年的最新进展,对一项先前研究进行了重构与更新,并纳入了新的文献与案例研究。我们概述了SDLC中的协作障碍问题,并探讨了LLMs如何在团队情境中提升生产力、沟通与决策能力。通过文献综述、行业实例、团队调查以及两项案例研究,我们评估了LLM辅助工具(如代码生成助手与AI驱动的项目管理代理)对协作式软件工程实践的影响。我们的研究结果表明,LLMs能够显著提升效率(通过自动化重复性任务与文档工作)、增强沟通清晰度并促进跨职能协作,同时也引入了模型局限性及隐私顾虑等新挑战。我们讨论了这些优势与挑战,提出了指导本研究的研究问题,评估了有效性威胁,并展望了未来的研究方向,包括领域特定模型定制、改进与开发工具的集成,以及确保可信度与安全性的稳健策略。