One-class novelty detection is conducted to iden-tify anomalous instances, with different distributions from theexpected normal instances. In this paper, the Generative Adver-sarial Network based on the Encoder-Decoder-Encoder scheme(EDE-GAN) achieves state-of-the-art performance. The two fac-tors bellow serve the above purpose: 1) The EDE-GAN calculatesthe distance between two latent vectors as the anomaly score,which is unlike the previous methods by utilizing the reconstruc-tion error between images. 2) The model obtains best resultswhen the batch size is set to 1. To illustrate their superiority,we design a new GAN architecture, and compareperformances according to different batch sizes. Moreover, withexperimentation leads to discovery, our result implies there is alsoevidence of just how beneficial constraint on the latent space arewhen engaging in model training.In an attempt to learn compact and fast models, we present anew technology, Progressive Knowledge Distillation with GANs(P-KDGAN), which connects two standard GANs through thedesigned distillation loss. Two-step progressive learning continu-ously augments the performance of student GANs with improvedresults over single-step approach. Our experimental results onCIFAR-10, MNIST, and FMNIST datasets illustrate that P-KDGAN improves the performance of the student GAN by2.44%, 1.77%, and 1.73% when compressing the computationat ratios of 24.45:1, 311.11:1, and 700:1, respectively.
翻译:进行一等新颖的检测, 使异常现象出现700个新情况, 其分布与预期的正常情况不同。 在本文中, 基于 Eccoder- Decoder- Encoder (EDE- GAN) 的创算 Adver- sarial Network 能够达到最先进的性能。 两种显微图都为上述目的服务:(1) EDE- GAN 计算两种潜伏矢量之间的距离, 与以往的方法不同, 使用图像之间的校正错误。 (2) 当批量大小设定为 1 时, 模型获得最佳结果。 为了说明它们的优越性能, 我们设计了新的GAN- 结构, 并按照不同的批量大小比较业绩。 此外, 实验结果显示, 当进行模型培训时, 潜伏空间的制约是多么有益。 为了学习压缩和快速模型, 我们展示了一种新技术, 与GAN(P- KDG- DGAN AN ) 的累进化技术, 与GAN 递进式的递进性结果。 1. 将GAN- 升级的两种GAN- dival 的成绩分别连接连接, 通过学习GAN1, 和不断的GAN- disal- div 的GAN- disald GVDGAN 1, 和不断 改进的 的成绩 和不断改进的GAN- gVAL 1。