Social insect colonies routinely face large vertebrate predators, against which they need to mount a collective defense. To do so, honeybees use an alarm pheromone that recruits nearby bees into mass stinging of the perceived threat. This alarm pheromone is carried directly on the stinger, hence its concentration builds up during the course of the attack. Here, we investigate how individual bees react to different alarm pheromone concentrations, and how this evolved response-pattern leads to better coordination at the group level. We first present an individual dose-response curve to the alarm pheromone, obtained experimentally. Second, we apply Projective Simulation to model each bee as an artificial learning agent that relies on the pheromone concentration to decide whether to sting or not. If the emergent collective performance benefits the colony, the individual reactions that led to it are enhanced via reinforcement learning, thus emulating natural selection. Predators are modeled in a realistic way so that the effect of factors such as their resistance, their killing rate or their frequency of attacks can be studied. We are able to reproduce the experimentally measured response-pattern of real bees, and to identify the main selection pressures that shaped it. Finally, we apply the model to a case study: by tuning the parameters to represent the environmental conditions of European or African bees, we can predict the difference in aggressiveness observed between these two subspecies.


翻译:社会昆虫聚居地通常面临巨大的脊椎动物,他们需要对此进行集体防御。为了做到这一点,蜜蜂使用一个警钟球素,在附近招募蜂群,对所察觉的威胁进行大规模刺杀。这个警钟将球罗酮直接带在刺耳机上,因此其集中度在袭击过程中形成。在这里,我们调查个体蜜蜂如何对不同的警钟光素浓度作出反应,以及这种演变反应模式如何在集团一级导致更好的协调。我们首先对通过实验获得的警报光素提出单项剂量反应曲线。第二,我们将每个蜂群作为人工学习剂来进行模拟,而这种模拟则依赖球网的集中度来决定是否施刺。如果出现集体性表现有利于聚居地,那么导致它的个人反应就会通过强化学习而增强,从而模拟自然选择。先行者以现实的方式建模,这样就可以对诸如它们的抵抗力、杀人率或攻击频率等各种因素的效果进行研究。我们可以用预测性模拟模型来模拟每个蜂蜜作为模型的模型的模型,我们最后可以复制一个实验性模型来分析这些模型,我们用来分析环境的模型,我们用来分析这些模型的模型, 来分析这些模型来分析。我们用来分析这些模型的模型来分析。我们用来分析。我们用来分析这些模型的模型来分析。我们用来分析。我们用来分析这些模型的模型的模型来分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员