The goal of this thesis is to propose the combination of Control-Barrier-Functions (CBF) with Model-Predictive-Control (MPC) resulting in the novel Model-Predictive-Control-Barrier-Function (MPCBF). It can be shown, that the performance of the MPCBF surpasses the performance of the CBF due to the increased time horizon of the MPC. Moreover, the MPCBF was applied to a quadrotor, a system strongly in need of fast and predictive control. Using the MPCBF, the quadrotor was able to avoid obstacles, which the CBF failed to avoid due to the relative speed of the obstacle. The results of this work are experimentally validated.


翻译:该论文的目的是建议将控制-障碍-功能(CBF)与模型-预防-控制(MPC)相结合,从而形成新的模型-预防-控制-障碍-功能(MPCBF),可以证明,由于MPCF时间范围扩大,其性能超过CBF的性能。此外,MPCFF适用于一个极需快速和预测控制的二次钻探器,利用MPCBF,该二次钻探器能够避免障碍,由于障碍的相对速度,CBF未能避免这些障碍。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员