This paper approaches the unsupervised learning problem by minimizing the second-order Wasserstein loss (the $W_2$ loss) through a distribution-dependent ordinary differential equation (ODE), whose dynamics involves the Kantorovich potential associated with the true data distribution and a current estimate of it. A main result shows that the time-marginal laws of the ODE form a gradient flow for the $W_2$ loss, which converges exponentially to the true data distribution. An Euler scheme for the ODE is proposed and it is shown to recover the gradient flow for the $W_2$ loss in the limit. An algorithm is designed by following the scheme and applying persistent training, which naturally fits our gradient-flow approach. In both low- and high-dimensional experiments, our algorithm outperforms Wasserstein generative adversarial networks by increasing the level of persistent training appropriately.


翻译:本文通过一个依赖于分布的常微分方程(ODE)来最小化二阶Wasserstein损失($W_2$损失),从而解决无监督学习问题。该ODE的动力学涉及与真实数据分布及其当前估计相关的Kantorovich势。一个主要结果表明,该ODE的时间边缘律构成了$W_2$损失的梯度流,并以指数速度收敛到真实数据分布。本文提出了该ODE的欧拉格式,并证明其在极限情况下恢复了$W_2$损失的梯度流。通过遵循该格式并应用持续训练,设计了一种算法,该算法自然地契合我们的梯度流方法。在低维和高维实验中,通过适当提高持续训练水平,我们的算法在性能上超越了Wasserstein生成对抗网络。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Why Smooth Stability Assumptions Fail for ReLU Learning
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员