Two instances $(I,k)$ and $(I',k')$ of a parameterized problem $P$ are equivalent if they have the same set of solutions (static equivalent) or if the set of solutions of $(I,k)$ can be constructed by the set of solutions for $(I',k')$ and some computable pre-solutions. If the algorithm constructing such a (static) equivalent instance whose size is polynomial bounded runs in fixed-parameter tractable (FPT) time, we say that there exists a (static) equivalent instance for this problem. In this paper we present (static) equivalent instances for Scheduling and Knapsack problems. We improve the bound for the $\ell_1$-norm of an equivalent vector given by Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, and Onn and show how this yields equivalent instances for integer linear programs (ILPs) and related problems. We obtain an $O(MN^2\log(NU))$ static equivalent instance for feasibility ILPs where $M$ is the number of constraints, $N$ is the number of variables and $U$ is an upper bound for the $\ell_\infty$-norm of the smallest feasible solution. With this, we get an $O(n^2\log(n))$ static equivalent instance for Knapsack where $n$ is the number of items. Moreover, we give an $O(M^2N\log(NMΔ))$ kernel for feasibility ILPs where $Δ$ is an upper bound for the $\ell_\infty$-norm of the given constraint matrix. Using balancing results by Knop et al., the ConfILP and a proximity result by Eisenbrand and Weismantel we give an $O(d^2\log(p_{\max}))$ equivalent instance for LoadBalancing, a generalization of scheduling problems. Here $d$ is the number of different processing times and $p_{\max}$ is the largest processing time.
翻译:参数化问题 $P$ 的两个实例 $(I,k)$ 与 $(I',k')$ 若具有相同的解集(静态等价),或 $(I,k)$ 的解集可由 $(I',k')$ 的解集及某些可计算的预解构造得出,则称它们是等价的。若构造这种规模为多项式有界的(静态)等价实例的算法可在固定参数可处理(FPT)时间内运行,则称该问题存在(静态)等价实例。本文针对调度与背包问题提出了(静态)等价实例。我们改进了 Eisenbrand、Hunkenschröder、Klein、Koutecký、Levin 和 Onn 给出的等价向量 $\ell_1$-范数界,并展示了如何由此为整数线性规划(ILP)及相关问题构造等价实例。对于可行性 ILP,我们获得了一个规模为 $O(MN^2\log(NU))$ 的静态等价实例,其中 $M$ 为约束数量,$N$ 为变量数量,$U$ 为最小可行解 $\ell_\infty$-范数的上界。基于此,对于背包问题我们得到一个规模为 $O(n^2\log(n))$ 的静态等价实例,其中 $n$ 为物品数量。此外,我们为可行性 ILP 给出了一个规模为 $O(M^2N\log(NMΔ))$ 的核,其中 $Δ$ 为给定约束矩阵 $\ell_\infty$-范数的上界。利用 Knop 等人提出的平衡结果、ConfILP 以及 Eisenbrand 与 Weismantel 的邻近性结果,我们为负载均衡问题(调度问题的推广)构造了一个规模为 $O(d^2\log(p_{\max}))$ 的等价实例,其中 $d$ 为不同处理时间的数量,$p_{\max}$ 为最大处理时间。