The Intergovernmental Panel on Climate Change proposes different mitigation strategies to achieve the net emissions reductions that would be required to follow a pathway that limits global warming to 1.5{\deg}C with no or limited overshoot. The transition towards a carbon-free society goes through an inevitable increase in the share of renewable generation in the energy mix and a drastic decrease in the total consumption of fossil fuels. Therefore, this thesis studies the integration of renewables in power systems by investigating forecasting and decision-making tools. Indeed, in contrast to conventional power plants, renewable energy is subject to uncertainty. Most of the generation technologies based on renewable sources are non-dispatchable, and their production is stochastic and complex to predict in advance. A high share of renewables is challenging for power systems that have been designed and sized for dispatchable units. In this context, probabilistic forecasts, which aim at modeling the distribution of all possible future realizations, have become a vital tool to equip decision-makers, hopefully leading to better decisions in energy applications. This thesis focuses on two main research questions: (1) How to produce reliable probabilistic renewable generation forecasts, consumption, and electricity prices? (2) How to make decisions with uncertainty using probabilistic forecasts? The thesis perimeter is the energy management of "small" systems such as microgrids at a residential scale on a day-ahead basis. It is divided into two main parts to propose directions to address both research questions (1) a forecasting part; (2) a planning and control part.
翻译:政府间气候变化问题小组(政府间气候变化问题小组)提出了不同的缓解战略,以实现实现净减排战略,而这种净减排是遵循将全球变暖限制在1.5xdeg}C的路径所需要的,没有或有限地超速。向无碳社会过渡的过程是可再生能源在能源组合中的比例不可避免地增加,化石燃料总消耗量也急剧减少。因此,本论文研究了通过调查预测和决策工具将可再生能源纳入电力系统的问题。事实上,与常规发电厂相比,可再生能源受到不确定因素的影响。大多数基于可再生能源的发电技术是不可调控的,其生产是随机的和复杂的,可以提前预测。向无碳社会过渡的过程是,可再生能源在能源组合中所占的份额不可避免地增加,可再生能源在能源组合中所占的份额也不可避免地增加,因此,概率预测旨在模拟所有未来可能实现成果的分布,已成为培养决策者的重要工具,希望能够在能源应用方面作出更好的决策。本论文侧重于两个主要研究问题:(1) 如何以可靠、可探测的可再生能源预测、消费和电力生产是预估的复杂和复杂程度,以便提前预测。对于为可发送的单位设计和规模的电力管理规模的电力的电力的系统来说,“在预测中如何以预测中提出一种稳定的基础,在预测中选择一个主要的阶段作出一个可靠的预测。”