In this paper, we study the performance of reconfigurable intelligent surfaces (RISs) in a multicell broadcast channel (BC) that employs improper Gaussian signaling (IGS) jointly with non-orthogonal multiple access (NOMA) to optimize either the minimum-weighted rate or the energy efficiency (EE) of the network. We show that although the RIS can significantly improve the system performance, it cannot mitigate interference completely, so we have to employ other interference-management techniques to further improve performance. We show that the proposed NOMA-based IGS scheme can substantially outperform proper Gaussian signaling (PGS) and IGS schemes that treat interference as noise (TIN) in particular when the number of users per cell is larger than the number of base station (BS) antennas (referred to as overloaded networks). In other words, IGS and NOMA complement to each other as interference management techniques in multicell RIS-assisted BCs. Furthermore, we consider three different feasibility sets for the RIS components showing that even a RIS with a small number of elements provides considerable gains for all the feasibility sets.


翻译:在本文中,我们研究了多细胞广播频道(BC)中可重新配置的智能表面(RIS)的性能,该频道使用不适当的高斯信号(IGS)与非垂直多重访问(NOMA)联合使用不适当的高斯信号(IGS),以优化网络的最低加权率或能源效率(EE),我们表明,虽然RIS可以显著改善系统性能,但无法完全减少干扰,因此我们必须使用其他干扰管理技术来进一步改进性能。我们表明,拟议的以NOMA为基础的IGS系统可以大大超过适当的高斯信号(GGS)和IGS系统,特别是当每个电池的用户数量大于基站天线(称为超载网络)时,将干扰作为噪音(TIN)处理。换句话说,IGS和NOMA作为多细胞RIS协助的公分卡的干扰管理技术相互补充。此外,我们认为,对于RIS组件的三种不同的可行性,表明即使具有少量要素的RIS也为所有可行性数据集带来相当大的收益。</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员