Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity, and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for embedding sensor intelligence on edge devices to combat these challenges. Our vision for "sensor 2.0" entails segregating sensor input data and ML processing from the wider system at the hardware level and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the software stack of the controlling microprocessor on an embedded system and how the modularity of ML sensors alleviates these problems. ML sensors increase privacy and accuracy while making it easier for system builders to integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0.
翻译:机床学习传感器代表着未来嵌入式机器学习应用程序的范式转变。 嵌入式机器学习(ML)目前受到数据移动的复杂整合、模块缺乏、隐私和安全关切的困扰。 本条提出在边缘设备上嵌入传感器情报以应对这些挑战的更以数据为中心的模式。 我们的“ 传感器2.0” 愿景要求将传感器输入数据和ML处理与硬件层面的更广泛系统分离,并提供在功能上模仿传统传感器的薄界面。 这种分离导致模块化和易于使用的 ML 传感器。 我们讨论了将ML处理建立到控制式微处理器软件堆中的标准方法所带来的挑战,以及ML传感器模块化如何缓解这些问题。 ML 传感器提高隐私和准确性,同时使系统建设者更容易将ML作为简单组成部分纳入产品。 我们提供了潜在的 ML 传感器和示意式数据表的实例,以示我们建立对话,以推进传感器2.0。