Motion planning is a computationally intensive and well-studied problem in autonomous robots. However, motion planning hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical applications, and blanket application of traditional mitigation techniques is ill-suited due to cost, power, and performance overheads. We propose Collision Exposure Factor (CEF), a novel metric to assess the failure vulnerability of circuits processing spatial relationships, including motion planning. CEF is based on the insight that the safety violation probability increases with the surface area of the physical space exposed by a bit-flip. We evaluate CEF on four MPAs. We demonstrate empirically that CEF is correlated with safety violation probability, and that CEF-aware selective error mitigation provides 12.3x, 9.6x, and 4.2x lower Failures-In-Time (FIT) rate on average for the same amount of protected memory compared to uniform, bit-position, and access-frequency-aware selection of critical data. Furthermore, we show how to employ CEF to enable fault characterization using 23,000x fewer fault injection (FI) experiments than exhaustive FI, and evaluate our FI approach on different robots and MPAs. We demonstrate that CEF-aware FI can provide insights on vulnerable bits in an MPA while taking the same amount of time as uniform statistical FI. Finally, we use the CEF to formulate guidelines for designing soft-error resilient MPAs.
翻译:动态规划是自动机器人中一个在计算上密集和研究周密的问题,然而,运动规划硬件加速器(MPA)必须具有软性弹性,以便在安全关键应用中部署,传统缓解技术的全面应用由于成本、电力和性能管理间接费用而不适合。我们提议采用碰撞暴露系数(CEF),这是评估电路处理空间关系(包括运动规划)的失灵脆弱性的一种新颖衡量标准。 CEF的根据是,通过一点翻转暴露物理空间表面面积时,违反安全的可能性会增加。我们评估了四个MPA的CEF。我们从经验上表明,CEFF与违反安全的可能性相关,而CEFP有选择的误差减缓则提供了12.3x、9.6x和4.2x的低误差率。我们提议采用与统一、点定位和访问频率-频率选择关键数据的相同程度,以同样的程度来评估我们如何利用CEFEF的误定性使用23 000x误算法(FIFI),在设计C-FIFA的精确度试验中,我们可以对C-FIFIFA进行不同程度的统计分析。