We analyze the performance of quantum stabilizer codes, one of the most important classes for practical implementations, on both symmetric and asymmetric quantum channels. To this aim, we first derive the weight enumerator (WE) for the undetectable errors based on the quantum MacWilliams identities. The WE is then used to evaluate tight upper bounds on the error rate of CSS quantum codes with \acl{MW} decoding. For surface codes we also derive a simple closed form expression of the bounds over the depolarizing channel. We introduce a novel approach that combines the knowledge of WE with a logical operator analysis, allowing the derivation of the exact asymptotic error rate for short codes. For example, on a depolarizing channel with physical error rate $ρ\to 0$, the logical error rate $ρ_\mathrm{L}$ is asymptotically $ρ_\mathrm{L} \approx 16 ρ^2$ for the $[[9,1,3]]$ Shor code, $ρ_\mathrm{L} \approx 16.3 ρ^2$ for the $[[7,1,3]]$ Steane code, $ρ_\mathrm{L} \approx 18.7 ρ^2$ for the $[[13,1,3]]$ surface code, and $ρ_\mathrm{L} \approx 149.3 ρ^3$ for the $[[41,1,5]]$ surface code. For larger codes our bound provides $ρ_\mathrm{L} \approx 1215 ρ^4$ and $ρ_\mathrm{L} \approx 663 ρ^5$ for the $[[85,1,7]]$ and the $[[181,1,10]]$ surface codes, respectively. Finally, we extend our analysis to include realistic, noisy syndrome extraction circuits by modeling error propagation throughout gadgets. This enables estimation of logical error rates under faulty measurements. The performance analysis serves as a design tool for developing fault-tolerant quantum systems by guiding the selection of quantum codes based on their error correction capability. Additionally, it offers a novel perspective on quantum degeneracy, showing it represents the fraction of non-correctable error patterns shared by multiple logical operators.
翻译:我们分析了量子稳定子码(实际实现中最重要的一类量子码)在对称与非对称量子信道上的性能。为此,我们首先基于量子MacWilliams恒等式推导了不可检测错误的重量枚举子。随后利用该重量枚举子评估了采用MW解码的CSS量子码错误率的紧致上界。对于表面码,我们还推导了其在去极化信道上界值的简单闭式表达式。我们提出了一种将重量枚举子知识与逻辑算子分析相结合的新方法,从而能够推导短码的精确渐近错误率。例如,在物理错误率$ρ\\to 0$的去极化信道上,$[[9,1,3]]$ Shor码的逻辑错误率渐近为$ρ_\\mathrm{L} \\approx 16 ρ^2$,$[[7,1,3]]$ Steane码为$ρ_\\mathrm{L} \\approx 16.3 ρ^2$,$[[13,1,3]]$表面码为$ρ_\\mathrm{L} \\approx 18.7 ρ^2$,$[[41,1,5]]$表面码为$ρ_\\mathrm{L} \\approx 149.3 ρ^3$。对于更大规模的码,我们的界给出$[[85,1,7]]$和$[[181,1,10]]$表面码的逻辑错误率分别为$ρ_\\mathrm{L} \\approx 1215 ρ^4$和$ρ_\\mathrm{L} \\approx 663 ρ^5$。最后,我们通过建模错误在量子门器件中的传播,将分析扩展至包含实际有噪的综合征提取电路,从而能够在故障测量下估计逻辑错误率。该性能分析可作为设计容错量子系统的工具,通过指导基于纠错能力选择量子码。此外,研究为量子简并性提供了新视角,表明其代表了多个逻辑算子共享的不可纠正错误模式的比例。