This paper develops new identification results for multidimensional continuous measurement-error models where all observed measurements are contaminated by potentially correlated errors and none provides an injective mapping of the latent distribution. Using third order cross moments, the paper constructs a three way tensor whose unique decomposition, guaranteed by Kruskal theorem, identifies the factor loading matrices. Starting with a linear structure, the paper recovers the full distribution of latent factors by constructing suitable measurements and applying scalar or multivariate versions of Kotlarski identity. As a result, the joint distribution of the latent vector and measurement errors is fully identified without requiring injective measurements, showing that multivariate latent structure can be recovered in broader settings than previously believed. Under injectivity, the paper also provides user-friendly testable conditions for identification. Finally, this paper provides general identification results for nonlinear models using a newly-defined generalized Kruskal rank - signal rank - of intergral operators. These results have wide applicability in empirical work involving noisy or indirect measurements, including factor models, survey data with reporting errors, mismeasured regressors in econometrics, and multidimensional latent-trait models in psychology and marketing, potentially enabling more robust estimation and interpretation when clean measurements are unavailable.
翻译:本文针对多维连续测量误差模型提出了新的识别结果,其中所有观测测量值均受到潜在相关误差的污染,且没有任何测量提供潜在分布的注入映射。利用三阶交叉矩,本文构建了一个三阶张量,其唯一分解(由Kruskal定理保证)识别了因子载荷矩阵。从线性结构出发,通过构造合适的测量值并应用Kotlarski恒等式的标量或多变量版本,本文恢复了潜在因子的完整分布。结果表明,潜在向量与测量误差的联合分布得以完全识别,无需依赖注入性测量,这证明多元潜在结构可在比以往认知更广泛的设定中被恢复。在注入性条件下,本文还提供了用户友好的可检验识别条件。最后,本文利用新定义的积分算子广义Kruskal秩——信号秩,为非线性模型提供了普适的识别结果。这些结果在涉及噪声或间接测量的实证研究中具有广泛适用性,包括因子模型、含报告误差的调查数据、计量经济学中的误测回归变量,以及心理学和市场营销中的多维潜在特质模型,有望在缺乏洁净测量的情况下实现更稳健的估计与解释。