Pixel-wise regression is probably the most common problem in fine-grained computer vision tasks, such as estimating keypoint heatmaps and segmentation masks. These regression problems are very challenging particularly because they require, at low computation overheads, modeling long-range dependencies on high-resolution inputs/outputs to estimate the highly nonlinear pixel-wise semantics. While attention mechanisms in Deep Convolutional Neural Networks(DCNNs) has become popular for boosting long-range dependencies, element-specific attention, such as Nonlocal blocks, is highly complex and noise-sensitive to learn, and most of simplified attention hybrids try to reach the best compromise among multiple types of tasks. In this paper, we present the Polarized Self-Attention(PSA) block that incorporates two critical designs towards high-quality pixel-wise regression: (1) Polarized filtering: keeping high internal resolution in both channel and spatial attention computation while completely collapsing input tensors along their counterpart dimensions. (2) Enhancement: composing non-linearity that directly fits the output distribution of typical fine-grained regression, such as the 2D Gaussian distribution (keypoint heatmaps), or the 2D Binormial distribution (binary segmentation masks). PSA appears to have exhausted the representation capacity within its channel-only and spatial-only branches, such that there is only marginal metric differences between its sequential and parallel layouts. Experimental results show that PSA boosts standard baselines by $2-4$ points, and boosts state-of-the-arts by $1-2$ points on 2D pose estimation and semantic segmentation benchmarks.


翻译:Pixel 错误回归可能是微细微计算机视觉任务中最常见的问题,例如估计关键点热图和偏移面罩。这些回归问题非常具有挑战性,特别是因为它们需要在低计算间接费用中模拟高分辨率投入/输出的远程依赖性模型,以估计高非线性像素的语义。虽然深相相向神经网络(DCNN)的注意机制对于提高远程依赖性十分流行,但非本地区块等特定元素的注意非常复杂,对学习敏感噪音敏感,而且大多数简化的注意混合体试图在多种任务类型中达成最佳妥协。在本文件中,我们介绍了极化的自控(PSA)块,其中含有两种高质量像素偏差的临界图案: (1) 极化过滤器:在频道和空间关注的计算中保持高内部分辨率,同时在对等层面完全崩溃输入元气压。 (2) 增强:国家将直接符合典型的底压推进度平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面图。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
10+阅读 · 2021年2月4日
【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
27+阅读 · 2021年1月4日
【NeurIPS2020】针对弱监督目标检测的综合注意力自蒸馏
专知会员服务
31+阅读 · 2020年11月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
已删除
将门创投
5+阅读 · 2019年4月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年4月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员