In 1952, Dirac proved the following theorem about long cycles in graphs with large minimum vertex degrees: Every $n$-vertex $2$-connected graph $G$ with minimum vertex degree $\delta\geq 2$ contains a cycle with at least $\min\{2\delta,n\}$ vertices. In particular, if $\delta\geq n/2$, then $G$ is Hamiltonian. The proof of Dirac's theorem is constructive, and it yields an algorithm computing the corresponding cycle in polynomial time. The combinatorial bound of Dirac's theorem is tight in the following sense. There are 2-connected graphs that do not contain cycles of length more than $2\delta+1$. Also, there are non-Hamiltonian graphs with all vertices but one of degree at least $n/2$. This prompts naturally to the following algorithmic questions. For $k\geq 1$, (A) How difficult is to decide whether a 2-connected graph contains a cycle of length at least $\min\{2\delta+k,n\}$? (B) How difficult is to decide whether a graph $G$ is Hamiltonian, when at least $n - k$ vertices of $G$ are of degrees at least $n/2-k$? The first question was asked by Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi. The second question is due to Jansen, Kozma, and Nederlof. Even for a very special case of $k=1$, the existence of a polynomial-time algorithm deciding whether $G$ contains a cycle of length at least $\min\{2\delta+1,n\}$ was open. We resolve both questions by proving the following algorithmic generalization of Dirac's theorem: If all but $k$ vertices of a $2$-connected graph $G$ are of degree at least $\delta$, then deciding whether $G$ has a cycle of length at least $\min\{2\delta +k, n\}$ can be done in time $2^{\mathcal{O}(k)}\cdot n^{\mathcal{O}(1)}$. The proof of the algorithmic generalization of Dirac's theorem builds on new graph-theoretical results that are interesting on their own.


翻译:在1952年, Dirac 证明了以下关于高顶心度的图解中长周期的理论: 美元- 顶值$$$, 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元, 美元- 美元- 美元- 美元( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元-

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
0+阅读 · 2021年9月11日
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员