This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
翻译:本文详细介绍了我们团队(BUSTED)在阿拉伯语AI生成文本检测AraGenEval共享任务中的参赛方案,最终获得第五名。我们研究了三种预训练Transformer模型的有效性:AraELECTRA、CAMeLBERT和XLM-RoBERTa。我们的方法包括在提供的二分类数据集上对每个模型进行微调。研究结果揭示了一个令人意外的现象:多语言模型XLM-RoBERTa以0.7701的F1分数取得了最佳性能,超越了专门的阿拉伯语模型。这项工作揭示了AI生成文本检测任务的复杂性,并突显了多语言模型强大的泛化能力。