Electroencephalography (EEG) signal decoding is a key technology that translates brain activity into executable commands, laying the foundation for direct brain-machine interfacing and intelligent interaction. To address the inherent spatiotemporal heterogeneity of EEG signals, this paper proposes a multi-branch parallel architecture, where each temporal scale is equipped with an independent spatial feature extraction module. To further enhance multi-branch feature fusion, we propose a Fusion of Multiscale Features via Centralized Sparse-attention Network (EEG-CSANet), a centralized sparse-attention network. It employs a main-auxiliary branch architecture, where the main branch models core spatiotemporal patterns via multiscale self-attention, and the auxiliary branch facilitates efficient local interactions through sparse cross-attention. Experimental results show that EEG-CSANet achieves state-of-the-art (SOTA) performance across five public datasets (BCIC-IV-2A, BCIC-IV-2B, HGD, SEED, and SEED-VIG), with accuracies of 88.54%, 91.09%, 99.43%, 96.03%, and 90.56%, respectively. Such performance demonstrates its strong adaptability and robustness across various EEG decoding tasks. Moreover, extensive ablation studies are conducted to enhance the interpretability of EEG-CSANet. In the future, we hope that EEG-CSANet could serve as a promising baseline model in the field of EEG signal decoding. The source code is publicly available at: https://github.com/Xiangrui-Cai/EEG-CSANet


翻译:脑电图(EEG)信号解码是将大脑活动转化为可执行命令的关键技术,为直接脑机接口与智能交互奠定了基础。针对EEG信号固有的时空异质性,本文提出了一种多分支并行架构,其中每个时间尺度均配备独立的空域特征提取模块。为进一步增强多分支特征融合,我们提出了一种基于集中式稀疏注意力网络的多尺度特征融合方法(EEG-CSANet)。该网络采用主-辅分支架构:主分支通过多尺度自注意力建模核心时空模式,辅分支则通过稀疏交叉注意力促进高效的局部交互。实验结果表明,EEG-CSANet在五个公开数据集(BCIC-IV-2A、BCIC-IV-2B、HGD、SEED和SEED-VIG)上均取得了最先进的性能,准确率分别达到88.54%、91.09%、99.43%、96.03%和90.56%。这一性能证明了其在多种EEG解码任务中具有强大的适应性与鲁棒性。此外,我们进行了广泛的消融实验以增强EEG-CSANet的可解释性。未来,我们希望EEG-CSANet能够成为EEG信号解码领域具有潜力的基线模型。源代码已公开于:https://github.com/Xiangrui-Cai/EEG-CSANet

0
下载
关闭预览

相关内容

【MIT-Stefanie Jegelka】图神经网络理论:表示与学习
专知会员服务
44+阅读 · 2022年5月21日
【Coling-2020】面向机器阅读理解的双向认知思维网络
专知会员服务
10+阅读 · 2021年2月12日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员