We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum-length edge) cost. We achieve an O(log n / log log n) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on a related result of Asadpour, Goemans, M\k{a}dry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi. We also explore the possibility of further improvement upon our main result through a comparison to the symmetric counterpart of the problem.
翻译:我们为瓶颈非对称旅行销售人员问题提出了第一个非三边近效算法。 鉴于正脊之间的非对称衡量成本, 问题在于找到一个能够最大限度地减少瓶颈( 或最大长度边缘) 成本的汉密尔顿周期。 我们实现了O( log n / log log n) 近效保证, 提供了一种新颖的算法技术来缩短欧莱安电路, 同时将所需捷径的长度限制在一定范围内。 这使我们能够利用Asadpour、 Geemans、 M\k{a}dry、 Oveis Gharan 和 Saberi 的相关结果来获得这一保证。 此外, 我们展示了我们的技术如何在某些情况下产生更强的近似界限, 比如 Oveis Gharan 和 Saberi 所研究的受约束或可调整的genus 案例 。 我们还探索了通过比较问题的对称对应方来进一步改进我们的主要结果的可能性 。