State-of-the-art asynchronous Byzantine fault-tolerant (BFT) protocols, such as HoneyBadgerBFT, BEAT, and Dumbo, have shown a performance comparable to partially synchronous BFT protocols. This paper studies two practical directions in asynchronous BFT. First, while all these asynchronous BFT protocols assume optimal resilience with 3f+1 replicas (where f is an upper bound on the number of Byzantine replicas), it is interesting to ask whether more efficient protocols are possible if relaxing the resilience level. Second, these recent BFT protocols evaluate their performance under failure-free scenarios. It is unclear if these protocols indeed perform well during failures and attacks. This work first studies asynchronous BFT with suboptimal resilience using 5f+1 and 7f+1 replicas. We present MiB, a novel and efficient asynchronous BFT framework using new distributed system constructions as building blocks. MiB consists of two main BFT instances and five other variants. As another contribution, we systematically design experiments for asynchronous BFT protocols with failures and evaluate their performance in various failure scenarios. We report interesting findings, showing asynchronous BFT indeed performs consistently well during various failure scenarios. In particular, via a five-continent deployment on Amazon EC2 using 140 replicas, we show the MiB instances have lower latency and much higher throughput than their asynchronous BFT counterparts.
翻译:BYANDGERBFT、BEAT和DBOBOBP协议等最先进的BYZANTATION(BFT)协议的效绩与部分同步的BFT协议相似。本文研究了非同步的BFT协议的两个实用方向。首先,所有这些非同步的BFT协议都具有3f+1复制品的最佳抗御力(在BYZANTIN复制品数量上方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方