To exploit massive amounts of data generated at mobile edge networks, federated learning (FL) has been proposed as an attractive substitute for centralized machine learning (ML). By collaboratively training a shared learning model at edge devices, FL avoids direct data transmission and thus overcomes high communication latency and privacy issues as compared to centralized ML. To improve the communication efficiency in FL model aggregation, over-the-air computation has been introduced to support a large number of simultaneous local model uploading by exploiting the inherent superposition property of wireless channels. However, due to the heterogeneity of communication capacities among edge devices, over-the-air FL suffers from the straggler issue in which the device with the weakest channel acts as a bottleneck of the model aggregation performance. This issue can be alleviated by device selection to some extent, but the latter still suffers from a tradeoff between data exploitation and model communication. In this paper, we leverage the reconfigurable intelligent surface (RIS) technology to relieve the straggler issue in over-the-air FL. Specifically, we develop a learning analysis framework to quantitatively characterize the impact of device selection and model aggregation error on the convergence of over-the-air FL. Then, we formulate a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration. Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches, especially when channel conditions vary dramatically across edge devices.


翻译:为了利用移动边缘网络产生的大量数据,提议采用联合学习(FL)作为集中机器学习的有吸引力的替代工具。通过在边缘设备上合作培训共享学习模式,FL避免直接数据传输,从而克服与中央ML相比的高度通信延迟和隐私问题。为了提高FL模型集成的通信效率,引入了超空计算,以支持大量同时同时上传的本地模型,利用无线频道固有的超定位属性。然而,由于边缘设备通信能力的异质性能,高空FL受到在边缘设备上共享学习模式问题的影响,FL避免直接数据传输,从而克服了与中央集成性功能相比的共享学习模式。我们开发了一个学习框架,与最弱频道的系统相比,在设计中最弱的系统性能选择方面,我们通过定量分析框架,在设计中层选择模型和最优化的系统选择中,我们通过模拟的模型和最优化的系统选择,在模拟的模型和最优化的测试中,我们形成了一个量化的优化的系统选择模型和最优化的系统选择,从而形成一个模拟的模型和最优化的升级的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员