We introduce EDS, a direct monocular visual odometry using events and frames. Our algorithm leverages the event generation model to track the camera motion in the blind time between frames. The method formulates a direct probabilistic approach of observed brightness increments. Per-pixel brightness increments are predicted using a sparse number of selected 3D points and are compared to the events via the brightness increment error to estimate camera motion. The method recovers a semi-dense 3D map using photometric bundle adjustment. EDS is the first method to perform 6-DOF VO using events and frames with a direct approach. By design, it overcomes the problem of changing appearance in indirect methods. We also show that, for a target error performance, EDS can work at lower frame rates than state-of-the-art frame-based VO solutions. This opens the door to low-power motion-tracking applications where frames are sparingly triggered "on demand" and our method tracks the motion in between. We release code and datasets to the public.
翻译:我们引入了EDS, 这是一种使用事件和框架的直观单视视觉测量。 我们的算法利用事件生成模型来跟踪两框架之间盲时间的摄像运动。 这种方法设计出一种直接的概率性方法, 以观察到的亮度递增。 Per- 像素亮度递增使用很少的选定三维点来预测, 并且通过光度递增错误来比较事件来估计相机运动。 这种方法利用光度捆绑调整, 回收了半剂量三维地图 。 EDS 是使用直接方法执行6- DOF VO的首个方法 。 通过设计, 它克服了间接方法中外观变化的问题 。 我们还显示, 对于目标错误性能来说, EDS 可以用比最先进的基于框架的VO解决方案低框架速度工作。 这打开了低功率运动跟踪应用程序的大门, 在那里, 框架“ 需求” 被快速触发, 而我们的方法跟踪了中间运动。 我们向公众发布代码和数据集 。