We develop an algorithm for the motion and task planning of a system comprised of multiple robots and unactuated objects under tasks expressed as Linear Temporal Logic (LTL) constraints. The robots and objects evolve subject to uncertain dynamics in an obstacle-cluttered environment. The key part of the proposed solution is the intelligent construction of a coupled transition system that encodes the motion and tasks of the robots and the objects. We achieve such a construction by designing appropriate adaptive control protocols in the lower level, which guarantee the safe robot navigation/object transportation in the environment while compensating for the dynamic uncertainties. The transition system is efficiently interfaced with the temporal logic specification via a sampling-based algorithm to output a discrete path as a sequence of synchronized actions of the robots; such actions satisfy the robots' as well as the objects' specifications. The robots execute this discrete path by using the derived low level control protocol. Simulation results verify the proposed framework.
翻译:我们为一个由多个机器人和未激活物体组成的系统的运动和任务规划开发了一种算法,该系统在以线性时空逻辑(LTL)限制表示的任务下,由多个机器人和未激活物体组成。机器人和物体在障碍层环境中随着不确定的动态变化而演变。拟议解决方案的关键部分是智能构建一个同时的过渡系统,将机器人和物体的动作和任务编码起来。我们通过在较低层次设计适当的适应性控制协议实现这样的构建,该程序保证在环境中安全机器人的导航/物体运输,同时补偿动态的不确定性。过渡系统通过基于取样的算法与时间逻辑规范有效互动,以输出离散路径作为机器人同步动作的序列;此类动作既符合机器人的动作,也符合物体的规格。机器人使用衍生的低水平控制协议执行这种离散路径。模拟结果验证了拟议框架。