We study approximating the continuous Fréchet distance of two curves with complexity $n$ and $m$, under the assumption that only one of the two curves is $c$-packed. Driemel, Har{-}Peled and Wenk DCG'12 studied Fréchet distance approximations under the assumption that both curves are $c$-packed. In $\mathbb{R}^d$, they prove a $(1+\varepsilon)$-approximation in $\tilde{O}(d \, c\,\frac{n+m}{\varepsilon})$ time. Bringmann and Künnemann IJCGA'17 improved this to $\tilde{O}(c\,\frac{n + m }{\sqrt{\varepsilon}})$ time, which they showed is near-tight under SETH. Recently, Gudmundsson, Mai, and Wong ISAAC'24 studied our setting where only one of the curves is $c$-packed. They provide an involved $\tilde{O}( d \cdot (c+\varepsilon^{-1})(cn\varepsilon^{-2} + c^2m\varepsilon^{-7} + \varepsilon^{-2d-1}))$-time algorithm when the $c$-packed curve has $n$ vertices and the arbitrary curve has $m$, where $d$ is the dimension in Euclidean space. In this paper, we show a simple technique to compute a $(1+\varepsilon)$-approximation in $\mathbb{R}^d$ in time $O(d \cdot c\,\frac{n+m}{\varepsilon}\log\frac{n+m}{\varepsilon})$ when one of the curves is $c$-packed. Our approach is not only simpler than previous work, but also significantly improves the dependencies on $c$, $\varepsilon$, and $d$. Moreover, it almost matches the asymptotically tight bound for when both curves are $c$-packed. Our algorithm is robust in the sense that it does not require knowledge of $c$, nor information about which of the two input curves is $c$-packed.
翻译:我们研究在仅有一条曲线为$c$-packed的假设下,近似计算复杂度分别为$n$和$m$的两条曲线的连续Fréchet距离。Driemel、Har{-}Peled和Wenk(DCG'12)研究了两条曲线均为$c$-packed假设下的Fréchet距离近似计算。在$\mathbb{R}^d$中,他们证明了可在$\tilde{O}(d \, c\,\frac{n+m}{\varepsilon})$时间内得到$(1+\varepsilon)$-近似解。Bringmann和Künnemann(IJCGA'17)将此改进为$\tilde{O}(c\,\frac{n + m }{\sqrt{\varepsilon}})$时间,并证明该结果在SETH下近乎紧界。最近,Gudmundsson、Mai和Wong(ISAAC'24)研究了我们的设定,即仅有一条曲线为$c$-packed。他们提出了一种复杂的$\tilde{O}( d \cdot (c+\varepsilon^{-1})(cn\varepsilon^{-2} + c^2m\varepsilon^{-7} + \varepsilon^{-2d-1}))$时间算法,其中$c$-packed曲线有$n$个顶点,任意曲线有$m$个顶点,$d$为欧氏空间维度。本文中,我们展示了一种简单技术,可在仅有一条曲线为$c$-packed时,于$\mathbb{R}^d$中以$O(d \cdot c\,\frac{n+m}{\varepsilon}\log\frac{n+m}{\varepsilon})$时间计算$(1+\varepsilon)$-近似解。我们的方法不仅比先前工作更简单,而且显著改善了对$c$、$\varepsilon$和$d$的依赖关系。此外,它几乎匹配了两条曲线均为$c$-packed时的渐近紧界。我们的算法具有鲁棒性,因为它既不需要已知$c$的值,也不需要知道两条输入曲线中哪一条是$c$-packed的。