We present a self-contained separation framework for P vs NP developed entirely within ZFC. The approach consists of: (i) a deterministic, radius-1 compilation from uniform polynomial-time Turing computation to local sum-of-squares (SoS) polynomials with polylogarithmic contextual entanglement width (CEW); (ii) a formal Width-to-Rank upper bound for the resulting SPDP matrices at matching parameters; (iii) an NP-side identity-minor lower bound in the same encoding; and (iv) a rank-monotone, instance-uniform extraction map from the compiled P-side polynomials to the NP family. Together these yield a contradiction under the assumption P = NP, establishing a separation. We develop a correspondence between CEW, viewed as a quantitative measure of computational contextuality, and SPDP rank, yielding a unified criterion for complexity separation. We prove that bounded-CEW observers correspond to polynomial-rank computations (the class P), while unbounded CEW characterizes the class NP. This implies that exponential SPDP rank for #3SAT and related hard families forces P != NP within the standard framework of complexity theory. Key technical components include: (1) constructive lower bounds on SPDP rank via Ramanujan-Tseitin expander families; (2) a non-circular reduction from Turing-machine computation to low-rank polynomial evaluation; (3) a codimension-collapse lemma ensuring that rank amplification cannot occur within polynomial resources; and (4) proofs of barrier immunity against relativization, natural proofs, and algebrization. The result is a complete ZFC proof architecture whose primitives and compositions are fully derived, with community verification and machine-checked formalization left as future work.
翻译:我们在ZFC体系内构建了一个自洽的P与NP问题分离框架。该方法包含:(i)从均匀多项式时间图灵计算到具有多对数上下文纠缠宽度(CEW)的局部平方和(SoS)多项式的确定性半径1编译;(ii)在匹配参数下对所得SPDP矩阵的形式化宽度-秩上界;(iii)相同编码中NP侧的身份子式下界;(iv)从编译后的P侧多项式到NP族系的秩单调、实例均匀提取映射。这些要素共同在P = NP假设下导出矛盾,从而建立分离。我们建立了作为计算上下文性量化指标的CEW与SPDP秩之间的对应关系,提出了复杂度分离的统一判据。我们证明有界CEW观察者对应多项式秩计算(P类),而无界CEW则表征NP类。这意味着#3SAT及相关困难族系的指数级SPDP秩在标准复杂度理论框架内必然导致P ≠ NP。关键技术组件包括:(1)通过Ramanujan-Tseitin扩展图族构造SPDP秩下界;(2)从图灵机计算到低秩多项式求值的非循环规约;(3)确保秩放大无法在多项式资源内发生的余维坍缩引理;(4)对相对化、自然证明及代数化屏障的免疫性证明。该成果构建了完整的ZFC证明体系,其基本构件与组合结构均已完整推导,社区验证与机器检查形式化将作为未来工作。