We present a method for synthesizing recursive functions that satisfy both a functional specification and an asymptotic resource bound. Prior methods for synthesis with a resource metric require the user to specify a concrete expression exactly describing resource usage, whereas our method uses big-O notation to specify the asymptotic resource usage. Our method can synthesize programs with complex resource bounds, such as a sort function that has complexity O(nlog(n)). Our synthesis procedure uses a type system that is able to assign an asymptotic complexity to terms, and can track recurrence relations of functions. These typing rules are justified by theorems used in analysis of algorithms, such as the Master Theorem and the Akra-Bazzi method. We implemented our method as an extension of prior type-based synthesis work. Our tool, SynPlexity, was able to synthesize complex divide-and-conquer programs that cannot be synthesized by prior solvers.


翻译:我们提出了一个组合递归函数的方法,该方法既符合功能规格,又符合无症状资源的约束。 先前的与资源衡量标准合成的方法要求用户指定一个具体表达方式,确切描述资源使用情况,而我们的方法则使用大标记来指定无症状资源使用情况。我们的方法可以将程序与复杂的资源界限合成,例如具有复杂的 O(nlog(n)) 的排序函数。我们的合成程序使用一种能够给术语指定无症状复杂性的型号系统,并可以跟踪功能的复发关系。这些打字规则可以用用于算法分析的术语(如主理论和Akra-Bazzi 方法)来证明。我们的方法是作为先前基于类型合成工作的扩展。我们的工具,即SynPlexity,能够合成无法由前解决者合成的复杂分解和共解程序。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
26+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月27日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员