Human beings can utilize multiple balance strategies, e.g. step location adjustment and angular momentum adaptation, to maintain balance when walking under dynamic disturbances. In this work, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for robust locomotion, with the capabilities of step location adjustment, Center of Mass (CoM) height variation, and angular momentum adaptation. These features are realized by constraining the Zero Moment Point within the support polygon. By using the nonlinear inverted pendulum plus flywheel model, the effects of upper-body rotation and vertical height motion are considered. As a result, the NMPC is formulated as a quadratically constrained quadratic program problem, which is solved fast by sequential quadratic programming. Using this unified framework, robust walking patterns that exploit reactive stepping, body inclination, and CoM height variation are generated based on the state estimation. The adaptability for bipedal walking in multiple scenarios has been demonstrated through simulation studies.
翻译:人类可以使用多重平衡战略,例如步位定位调整和角动动能适应,以便在动态扰动下行走时保持平衡。在这项工作中,我们提出一个新的非线性模型预测控制框架(NMPC),用于稳健的移动,具备步位定位调整能力、质量中心高度变化和角动能适应能力。这些特征是通过限制支持多边形内的零动点来实现的。通过使用非线性倒转的笔式和飞轮模型,可以考虑上体旋转和垂直高度运动的效果。因此,NMPC被设计成一个四面制约的四面形方案问题,通过连续的四面形编程迅速解决。使用这个统一框架,利用反应性踏脚、身体倾角和COM高度变化的稳健健行模式,根据国家估计产生。通过模拟研究可以显示在多种情景下双向行走的适应性能力。