A recent paper by Piliouras et al. [2021, 2022] introduces an uncoupled learning algorithm for normal-form games -- called Clairvoyant MWU (CMWU). In this note we show that CMWU is equivalent to the conceptual prox method described by Nemirovski [2004]. This connection immediately shows that it is possible to extend the CMWU algorithm to any convex game, a question left open by Piliouras et al. We call the resulting algorithm -- again equivalent to the conceptual prox method -- Clairvoyant OMD. At the same time, we show that our analysis yields an improved regret bound compared to the original bound by Piliouras et al., in that the regret of CMWU scales only with the square root of the number of players, rather than the number of players themselves.
翻译:Piliouras等人([2021, 2022] 最近的一份论文介绍了一种普通游戏的未混合学习算法 -- -- 称为Clairvoyant MWU(CMWU),在本说明中,我们表明,CMWU相当于Nemirovski[2004] 描述的概念Prox方法。这一联系立即表明,CMWU算法有可能扩大到任何 convex游戏,这是Piliouras等人留下的一个问题。我们称之为由此产生的算法 -- -- 也等同于概念Prox方法 -- -- Clairevoyant OMD。同时,我们表明,我们的分析与Piliouras等人最初的界限相比,产生了更好的遗憾感应力,因为CMWURas等人的遗憾只是以玩家数目的平方根,而不是玩家本身的数。