Convolutional neural network classifiers (CNNs) are susceptible to adversarial attacks that perturb original samples to fool classifiers such as an autonomous vehicle's road sign image classifier. CNNs also lack invariance in the classification of symmetric samples because CNNs can classify symmetric samples differently. Considered together, the CNN lack of adversarial robustness and the CNN lack of invariance mean that the classification of symmetric adversarial samples can differ from their incorrect classification. Could symmetric adversarial samples revert to their correct classification? This paper answers this question by designing a symmetry defense that inverts or horizontally flips adversarial samples before classification against adversaries unaware of the defense. Against adversaries aware of the defense, the defense devises a Klein four symmetry subgroup that includes the horizontal flip and pixel inversion symmetries. The symmetry defense uses the subgroup symmetries in accuracy evaluation and the subgroup closure property to confine the transformations that an adaptive adversary can apply before or after generating the adversarial sample. Without changing the preprocessing, parameters, or model, the proposed symmetry defense counters the Projected Gradient Descent (PGD) and AutoAttack attacks with near-default accuracies for ImageNet. Without using attack knowledge or adversarial samples, the proposed defense exceeds the current best defense, which trains on adversarial samples. The defense maintains and even improves the classification accuracy of non-adversarial samples.
翻译:CNN 也缺乏对称样本的分类。 CNN 由于CNN可以对对称样本进行不同的分类,CNN CNN 在对称样本的分类上缺乏差异性。 将CNN 认为CNN缺乏对称样本和CNN缺乏对称样本合并起来意味着对称对称对称对称对称样本的分类可能不同于其错误分类。 对称对称对称对称对称对立样本可以恢复到正确的分类? 本文通过设计一种对称防御,在对准或横向对准样本进行反向或横向翻转对称样本,然后对对手进行对称,因为CNNPN可以对对对称样本进行不同的分类。 CNNN可以对对对称样本进行不同的分类,因为CNN进行不同的对称。 CNNNC缺乏对称性对等性强性和对称性分类,意味着对对对对对对称对称对称对称性样本的分类可能与其错误分类不同。 对称性对称性对称性对称性对称性对称性对称性样本的样本能够将适应性对准性对称性对称性对称性对称,或者性对称性对称性对称性对称性对称性对称性标在生成之前或对立性取样性取样制之前或后对准性标之前或后对准性对准性对准性标,对准性对准性对准性标,对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准</s>