Recent research has confirmed the feasibility of backdoor attacks in deep reinforcement learning (RL) systems. However, the existing attacks require the ability to arbitrarily modify an agent's observation, constraining the application scope to simple RL systems such as Atari games. In this paper, we migrate backdoor attacks to more complex RL systems involving multiple agents and explore the possibility of triggering the backdoor without directly manipulating the agent's observation. As a proof of concept, we demonstrate that an adversary agent can trigger the backdoor of the victim agent with its own action in two-player competitive RL systems. We prototype and evaluate BACKDOORL in four competitive environments. The results show that when the backdoor is activated, the winning rate of the victim drops by 17% to 37% compared to when not activated.


翻译:最近的研究证实了深强化学习(RL)系统中后门攻击的可行性。然而,现有的攻击要求能够任意修改代理人的观察,将应用范围限制在Atari游戏等简单的RL系统上。在本文中,我们将后门攻击转移到涉及多个代理人的更复杂的RL系统上,并探索在不直接操纵代理人的观察的情况下触发后门攻击的可能性。作为概念的证明,我们证明一个敌对的代理人可以在两个玩家的竞争RL系统中自己行动,触发受害者代理人的后门。我们在四个竞争环境中对FREDOORL进行原型和评估。结果显示,当后门启动时,受害者的获胜率比未激活时下降了17%至37%。

0
下载
关闭预览

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
推荐系统
炼数成金订阅号
28+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
推荐系统概述
Python开发者
11+阅读 · 2018年9月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
3+阅读 · 2018年10月5日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
ViZDoom Competitions: Playing Doom from Pixels
Arxiv
5+阅读 · 2018年9月10日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
推荐系统
炼数成金订阅号
28+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
推荐系统概述
Python开发者
11+阅读 · 2018年9月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员