Automatic transfer of text between domains has become popular in recent times. One of its aims is to preserve the semantic content of text being translated from source to target domain. However, it does not explicitly maintain other attributes between the source and translated text, for e.g., text length and descriptiveness. Maintaining constraints in transfer has several downstream applications, including data augmentation and de-biasing. We introduce a method for such constrained unsupervised text style transfer by introducing two complementary losses to the generative adversarial network (GAN) family of models. Unlike the competing losses used in GANs, we introduce cooperative losses where the discriminator and the generator cooperate and reduce the same loss. The first is a contrastive loss and the second is a classification loss, aiming to regularize the latent space further and bring similar sentences across domains closer together. We demonstrate that such training retains lexical, syntactic, and domain-specific constraints between domains for multiple benchmark datasets, including ones where more than one attribute change. We show that the complementary cooperative losses improve text quality, according to both automated and human evaluation measures.


翻译:近期来,在不同域间自动传送文本变得十分普遍,其目的之一是保持从源到目标域翻译文本的语义内容,但没有明确保持源与翻译文本之间的其他属性,例如文字长度和描述性。保持对传输的限制有几种下游应用,包括数据增强和减少偏差。我们采用了一种方法,通过对模型的基因对抗网络(GAN)系列引入两个补充性损失来限制这种不受监督的文本样式转移。与在GANs中使用的相竞损失不同,我们引入了歧视者和生成者合作并减少相同损失的合作性损失。第一个是对比性损失,第二个是分类性损失,目的是进一步规范潜在空间,使跨域的类似句子更加接近。我们证明,这种培训在多个基准数据集的域间保留了词汇、合成和特定域内的限制,包括不止一个属性变化的域间。我们表明,根据自动化和人文评估措施,补充性合作损失提高了文本质量。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
74+阅读 · 2022年4月6日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月27日
Arxiv
0+阅读 · 2022年6月26日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员