The set of benchmark solutions used in the thermal radiative transfer community suffer some coverage gaps, in particular nonlinear, nonequilibrium problems. %Without denigrating the ingenuity or usefulness of any individual published benchmark, it is necessary to remark that the all of the extant non-equilibrium benchmarks require a linearization of the material coupling term. Also, there are no nonequilibrium, optically thick benchmarks. These shortcomings motivated the origination of a numerical method unfettered by preconditions of linearity and easily able to converge on smooth optically thick problems, a moving mesh Discontinuous Galerkin (DG) framework that utilizes an uncollided source treatment. Having already proven this method on time dependent scattering transport problems, we present here solutions to non-equilibrium thermal radiative transfer problems for familiar linearized systems and more physical nonlinear systems in both optically thin and thick regimes, including both the full transport and the $S_2$/$P_1$ solution. Geometric convergence is observed for smooth sources at all times and some nonsmooth sources at late times when there is local equilibrium and accurate solutions are achieved for step sources when the solution is not smooth.
翻译:在热散热传输社区使用的基准解决方案组群存在一些覆盖差距,特别是非线性、无平衡问题。%在不贬低任何个人公布的基准的才智或有用性的情况下,有必要指出,所有现存的非平衡基准都要求将材料组合的术语线化。此外,没有纯度、光厚的基准。这些缺陷促使一种不受线性先决条件约束的数字方法的起源,并容易在光密、光密的问题上汇合,一个使用不协调源处理的移动的中位互不兼容的伽勒金(DG)框架。在根据时间分散的运输问题已经证明了这一方法之后,我们在这里为熟悉的线性系统提出非平衡热辐射转移问题的解决办法,并在光密和厚的系统中提出更物理的非线性非线性系统,包括全流和$S2美元/美元/P_1美元的解决方案。在所有时间都观察到了光滑源的几何相趋同,而当当地平衡和平稳的解决方案没有实现时,某些非线性来源是非平稳的。