We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding. The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library. We have evaluated the performance of our model on two publicly available datasets - one for digit recognition task, and the other for vehicle recognition task. The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function. This is an improvement over around 57% accuracy obtained with the alternate approach of performing the classification without any kind of neural filtering. Overall, our proof-of-concept study indicates that introducing biologically plausible filtering in existing SCNN architecture will work well with noisy input images such as those in our vehicle recognition task. Based on our results, we plan to enhance our SCNN by integrating lateral inhibition-based redundancy reduction prior to rank-ordering, which will further improve the classification accuracy by the network.


翻译:我们提出了一个Spiking Convolutional Neal 网络(SCNN), 其中包含了受视网膜软骨- 温室启发的视网膜神经网络( SCNN), 其中包含了受Gaussian过滤器和按级顺序编码的差异值。 该模型使用在Nengo 图书馆中实施的适应于神经神经元的反射回映算法变量进行了培训。 我们评估了我们两个公开数据集模型的性能 — — 一个用于数字识别任务,另一个用于车辆识别任务。 这个网络达到了高达90%的准确度, 在那里, 损失是使用跨渗透功能计算得出的。 这是在不使用任何神经过滤方式进行分类的替代方法中获得的57%的精度的改进。 总体而言, 我们的论证概念研究表明, 在现有的 SSCNN 结构中引入生物学上可信的过滤方法将产生效果, 比如我们的车辆识别任务中的热气。 根据我们的结果, 我们计划加强我们的SCNNNN, 在排序之前整合基于横向抑制的冗余裁, 将进一步提高网络的分类准确性, 从而进一步提高网络的分类的准确性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
6+阅读 · 2019年4月8日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员