Can foundation models (such as ChatGPT) clean your data? In this proposal, we demonstrate that indeed ChatGPT can assist in data cleaning by suggesting corrections for specific cells in a data table (scenario 1). However, ChatGPT may struggle with datasets it has never encountered before (e.g., local enterprise data) or when the user requires an explanation of the source of the suggested clean values. To address these issues, we developed a retrieval-based method that complements ChatGPT's power with a user-provided data lake. The data lake is first indexed, we then retrieve the top-k relevant tuples to the user's query tuple and finally leverage ChatGPT to infer the correct value (scenario 2). Nevertheless, sharing enterprise data with ChatGPT, an externally hosted model, might not be feasible for privacy reasons. To assist with this scenario, we developed a custom RoBERTa-based foundation model that can be locally deployed. By fine-tuning it on a small number of examples, it can effectively make value inferences based on the retrieved tuples (scenario 3). Our proposed system, RetClean, seamlessly supports all three scenarios and provides a user-friendly GUI that enables the VLDB audience to explore and experiment with the system.


翻译:能否使用基础模型(例如ChatGPT)清理您的数据?在这篇论文中,我们展示了ChatGPT确实可以通过为数据表中特定单元格提供纠正建议来协助数据清理(场景1)。然而,ChatGPT可能在遇到以前从未遇到过的数据集(例如,本地企业数据)或用户需要解释所建议的清理值来源时会遇到困难。为了解决这些问题,我们开发了一种基于检索的方法,将用户提供的数据湖与ChatGPT的能力相结合。首先对数据湖进行索引,然后检索与用户查询元组最相关的前k个元组,最后利用ChatGPT推断正确的值(场景2)。然而,出于隐私原因,将企业数据与ChatGPT这样的外部托管模型共享可能不可行。为了协助这种情况,我们开发了一种定制的基于RoBERTa的基础模型,可在本地部署。通过对少量示例进行微调,它可以有效地进行值推断,这些值是基于检索到的元组(场景3)。我们提出的系统RetClean无缝支持这三种场景,并提供了一种用户友好的GUI,使VLDB读者能够探索和使用该系统。

0
下载
关闭预览

相关内容

数据湖是一个集中存储区,用于存储、处理和保护大量结构化、半结构化和非结构化数据。它可以以原生格式存储数据,并处理任何转换格式,而无需考虑大小限制。
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
已删除
德先生
53+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
已删除
德先生
53+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员