Several works related to spatial crowdsourcing have been proposed in the direction where the task executers are to perform the tasks within the stipulated deadlines. Though the deadlines are set, it may be a practical scenario that majority of the task executers submit the tasks as late as possible. This situation where the task executers may delay their task submission is termed as procrastination in behavioural economics. In many applications, these late submission of tasks may be problematic for task providers. So here, the participating agents (both task providers and task executers) are articulated with the procrastination issue. In literature, how to prevent this procrastination within the deadline is not addressed in spatial crowdsourcing scenario. However, in a bipartite graph setting one procrastination aware scheduling is proposed but balanced job (task and job will synonymously be used) distribution in different slots (also termed as schedules) is not considered there. In this paper, a procrastination aware scheduling of jobs is proliferated by proposing an (randomized) algorithm in spatial crowdsourcing scenario. Our algorithm ensures that balancing of jobs in different schedules are maintained. Our scheme is compared with the existing algorithm through extensive simulation and in terms of balancing effect, our proposed algorithm outperforms the existing one. Analytically it is shown that our proposed algorithm maintains the balanced distribution.
翻译:暂无翻译