Applications often require a fast, single-threaded search algorithm over sorted data, typical in table-lookup operations. We explore various search algorithms for a large number of search candidates over a relatively small array of logarithmically-distributed sorted data. These include an innovative hash-based search that takes advantage of floating point representation to bin data by the exponent. Algorithms that can be optimized to take advantage of SIMD vector instructions are of particular interest. We then conduct a case study applying our results and analyzing algorithmic performance with the EOSPAC package. EOSPAC is a table look-up library for manipulation and interpolation of SESAME equation-of-state data. Our investigation results in a couple of algorithms with better performance with a best case 8x speedup over the original EOSPAC Hunt-and-Locate implementation. Our techniques are generalizable to other instances of search algorithms seeking to get a performance boost from vectorization.


翻译:应用通常要求对分类数据进行快速、单行搜索算法,这在表格查看操作中是典型的。我们探索对数量众多的搜索候选人进行各种搜索算法,以相对较少的对数分布的分类数据进行搜索。其中包括利用推手对垃圾数据的浮点表示法进行创新的散射搜索。可优化利用 SIMD 矢量指示的算法特别有意义。然后,我们进行案例研究,运用我们的结果,分析ESPAC 软件包的算法性能。 EOSPAC 是用于SESAME 等式数据操作和内推的表格查看库。我们的调查结果是,几组算法的性能优于EOSPAC Hunt-Locate 原始操作的8x速度。我们的技术可被推广到其他搜索算法中,以便从矢量化中获得性能增强。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
Python图像处理,366页pdf,Image Operators Image Processing in Python
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年11月5日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Age of Information in Random Access Channels
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年11月5日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员