Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.


翻译:连通机器阅读(CMR)要求机器通过两个显著的决策对话状态和问题生成过程之间的多方向互动与人类沟通。在公开的CMR环境中,作为更现实的设想,检索到的背景知识会吵闹,从而导致信息传输的严峻挑战。现有研究通常为两个子任务培训独立或管道系统。然而,这些方法微不足道,因为使用硬标签决定来启动问题生成,最终会阻碍示范性工作。在这项工作中,我们建议了一种有效的定位战略,即只用一个解码器和桥梁决策以及问题生成来平滑两个对话国家,以提供一个更丰富的对话状态参考。对OR-SHARC数据集的实验显示了我们方法的有效性,从而实现新的最新结果。

0
下载
关闭预览

相关内容

最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
干货 | 为你解读34篇ACL论文
数据派THU
8+阅读 · 2018年6月7日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年10月16日
Arxiv
26+阅读 · 2018年9月21日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关资讯
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
干货 | 为你解读34篇ACL论文
数据派THU
8+阅读 · 2018年6月7日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员