In function inversion, we are given a function $f: [N] \mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data structures, communication complexity, and circuit lower bounds. Investigation of this problem in the quantum setting was initiated by Nayebi, Aaronson, Belovs, and Trevisan (2015), who proved a lower bound of $ST^2 = \tilde\Omega(N)$ for random permutations against classical advice, leaving open an intriguing possibility that Grover's search can be sped up to time $\tilde O(\sqrt{N/S})$. Recent works by Hhan, Xagawa, and Yamakawa (2019), and Chung, Liao, and Qian (2019) extended the argument for random functions and quantum advice, but the lower bound remains $ST^2 = \tilde\Omega(N)$. In this work, we prove that even with quantum advice, $ST + T^2 = \tilde\Omega(N)$ is required for an algorithm to invert random functions. This demonstrates that Grover's search is optimal for $S = \tilde O(\sqrt{N})$, ruling out any substantial speed-up for Grover's search even with quantum advice. Further improvements to our bounds would imply new classical circuit lower bounds, as shown by Corrigan-Gibbs and Kogan (2019). To prove this result, we develop a general framework for establishing quantum time-space lower bounds. We further demonstrate the power of our framework by proving quantum time-space lower bounds for Yao's box problem and salted cryptography.


翻译:在函数转换中, 我们被赋予了一个函数 $f : [N]\ mappsto [N], 并且想要准备一些大小为 $S 的任意调整建议, 这样我们就可以在时间上有效翻转任何图像$T$。 这是一个经过深思熟虑的问题, 与加密、 数据结构、 通信复杂度和电路下界有着深刻的联系。 量子设置中的这个问题调查是由Nayebi、 Aaronson、 Belovs 和 Trevisan (2015) 启动的, 他们证明了 $ST% 2 = talde\ Omega (N), 而对于经典建议来说, 随机功能和量子咨询的制约范围较低。 低调的值仍然是 ST2=treal_ corrupal 。 事实证明, 我们的直线值和直径直值框架 显示的是, 更低的量值将显示我们更低的量值 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
1+阅读 · 2021年1月6日
Arxiv
0+阅读 · 2021年1月6日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员