Industrial recommender systems usually consist of the matching stage and the ranking stage, in order to handle the billion-scale of users and items. The matching stage retrieves candidate items relevant to user interests, while the ranking stage sorts candidate items by user interests. Thus, the most critical ability is to model and represent user interests for either stage. Most of the existing deep learning-based models represent one user as a single vector which is insufficient to capture the varying nature of user's interests. In this paper, we approach this problem from a different view, to represent one user with multiple vectors encoding the different aspects of the user's interests. We propose the Multi-Interest Network with Dynamic routing (MIND) for dealing with user's diverse interests in the matching stage. Specifically, we design a multi-interest extractor layer based on capsule routing mechanism, which is applicable for clustering historical behaviors and extracting diverse interests. Furthermore, we develop a technique named label-aware attention to help learn a user representation with multiple vectors. Through extensive experiments on several public benchmarks and one large-scale industrial dataset from Tmall, we demonstrate that MIND can achieve superior performance than state-of-the-art methods for recommendation. Currently, MIND has been deployed for handling major online traffic at the homepage on Mobile Tmall App.
翻译:工业推荐人系统通常由匹配阶段和排名阶段组成, 以便处理10亿级用户和项目。 匹配阶段回收与用户利益相关的候选项目, 而排名阶段则按用户利益对候选项目进行排序。 因此, 最关键的能力是为任一阶段建模并代表用户利益。 大部分现有的深层次学习模型代表一个用户, 其单一矢量不足以反映用户利益的不同性质。 在本文件中, 我们从不同的角度处理这一问题, 代表一个用户, 以多个矢量编码用户的不同方面的利益。 我们提议在匹配阶段与用户的不同利益打交道的多端点动态路由网络( MIND ) 。 具体地说, 我们设计了一个基于胶囊路标机制的多利差层, 该机制适用于将历史行为组合和获取不同利益。 此外, 我们开发了一种名为“ 标签意识关注” 的技术, 以帮助了解用户对多个矢量的代表权。 通过对多个公共基准的广泛实验和来自Tmall 的大型工业数据集。 我们提议在匹配阶段与用户的不同利益打交道的多端网络运行, 我们证明MIND能够在互联网上实现比TMIT部署的主要交通的高级业绩。