Iterative methods play an important role in science and engineering applications, with uses ranging from linear system solvers in finite element methods to optimization solvers in model predictive control. Recently, a new computational strategy for iterative methods called ARCHITECT was proposed by Li et al. in [1] that uses the redundant number representation to create "stable digits" in the Most-significant Digits (MSDs) of an iterate, allowing the future iterations to assume the stable MSDs have not changed their value, eliminating the need to recompute them. In this work, we present a theoretical analysis of how these "stable digits" arise in iterative methods by showing that a Fejer monotone sequence in the redundant number representation can develop stable MSDs in the elements of the sequence as the sequence grows in length. This property of Fejer monotone sequences allows us to expand the class of iterative methods known to have MSD stability when using the redundant number representation to include any fixed-point iteration of a contractive Lipschitz continuous function. We then show that this allows for the theoretical guarantee of digit stability not just in the Jacobi method that was previously analyzed by Li et al. in [2], but also in other commonly used methods such as Newton's method.
翻译:迭代方法在科学和工程应用中发挥着重要作用,其使用范围从有限元素的线性系统求解器到模型预测控制中的优化求解器。最近,李等人在[1]中提出了名为ARCHITECT的迭代方法新计算战略,使用冗余数字表示法在迭代技术中创建“最显著的位数 ” ( MSDs), 允许未来迭代假设稳定的 MSDs 没有改变其价值, 从而消除了重新配置它们的必要性。 在这项工作中, 我们提出了一个理论分析, 说明这些“ 稳定的位数” 是如何在迭代方法中产生的, 显示冗余数字代表法中的一元序列序列序列可以在序列元素中形成稳定的 MSD 。 Fejer 单调序列的特性使我们能够扩大已知的迭代代方法类别, 在使用冗余数字表示法时, 包括任何固定点的 Lipschitz 持续功能。 我们随后展示, 允许在常规方法中, 不仅使用 亚基星 方法, 也使用其他方法 。