We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context. The low-rank property leads to parameter efficiency and permits taking computational shortcuts when computing mappings. Spectral properties are often subject to constraints in optimization problems, leading to better models and stability of optimization. We start by looking at the compact SVD parameterization of weight matrices and identifying redundancy sources in the parameterization. We further apply the Tensor Train (TT) decomposition to the compact SVD components, and propose a non-redundant differentiable parameterization of fixed TT-rank tensor manifolds, termed the Spectral Tensor Train Parameterization (STTP). We demonstrate the effects of neural network compression in the image classification setting and both compression and improved training stability in the generative adversarial training setting.
翻译:我们研究深层学习环境中带有嵌入光谱特性的重量矩阵的低级别参数化。 低级别属性导致参数效率,允许在计算绘图时采用计算快捷键。 光谱属性往往在优化方面受到制约,导致更好的模型和优化稳定性。 我们首先研究重力矩阵的压缩 SVD 参数化,并确定参数化中的冗余源。 我们进一步将Tensor tra train(TTT) 分解成紧凑的 SVD 组件,并提议对固定的TTT-rank 高压元进行非冗余的不同参数化,称为 Spectral Tensor 列车参数化(STTP ) 。 我们展示了神经网络压缩在图像分类设置中的效果,以及压缩和在基因对抗训练设置中提高培训稳定性。