Photon-efficient imaging with the single-photon LiDAR captures the 3D structure of a scene by only a few detected signal photons per pixel. However, the existing computational methods for photon-efficient imaging are pre-tuned on a restricted scenario or trained on simulated datasets. When applied to realistic scenarios whose signal-to-background ratios (SBR) and other hardware-specific properties differ from those of the original task, the model performance often significantly deteriorates. In this Letter, we present a domain adversarial adaptation design to alleviate this domain shift problem by exploiting unlabeled real-world data, with significant resource savings. This method demonstrates superior performance on simulated and real-world experiments using our home-built up-conversion single-photon imaging system, which provides an efficient approach to bypass the lack of ground-truth depth information in implementing computational imaging algorithms for realistic applications.
翻译:光子高效成像与单光子 LiDAR 的光子高效成像通过每像素只用少量检测到的信号光子光子来捕捉场景的 3D 结构。 但是,光子高效成像的现有计算方法是根据限制的情景预先调整的,或经过模拟数据集培训的。当应用到现实的情景时,其信号对背率(SBR)和其他硬件特性与最初任务的不同时,模型性能往往显著恶化。在本信中,我们提出了一个域对称适应设计,通过开发未标的真实世界数据来缓解这个域的转移问题,并节省大量资源。这种方法展示了利用我们自建的上方对流单光子成像系统进行模拟和现实世界实验的优异性。 这为在应用计算成像算算算法过程中避免缺乏地面对流深度信息提供了有效的方法。