Words in a natural language not only transmit information but also evolve with the development of civilization and human migration. The same is true for music. To understand the complex structure behind the music, we introduced an algorithm called the Essential Element Network (EEN) to encode the audio into text. The network is obtained by calculating the correlations between scales, time, and volume. Optimizing EEN to generate Zipfs law for the frequency and rank of the clustering coefficient enables us to generate and regard the semantic relationships as words. We map these encoded words into the scale-temporal space, which helps us organize systematically the syntax in the deep structure of music. Our algorithm provides precise descriptions of the complex network behind the music, as opposed to the black-box nature of other deep learning approaches. As a result, the experience and properties accumulated through these processes can offer not only a new approach to the applications of Natural Language Processing (NLP) but also an easier and more objective way to analyze the evolution and development of music.
翻译:在自然语言中,单词不仅传达信息,而且随着文明和人类迁移的发展而演变。音乐也是如此。为了理解音乐背后的复杂结构,本文引入了一种名为“基本元素网络”的算法来将音频编码为文本。该网络是通过计算音阶、时间和音量之间的相关性得到的。通过优化“基本元素网络”,使其生成频率和聚类系数排名的Zipf定律,我们可以生成并将语义关系视为单词。我们将这些编码后的单词映射到音阶-时间空间中,有助于系统地组织音乐深层结构中的句法。与其他深度学习方法的黑盒性质相比,我们的算法提供了对音乐背后复杂网络的精确描述。因此,通过这些过程累积的经验和属性不仅可以提供自然语言处理应用的新方法,还可以为分析音乐的进化和发展提供更简单、更客观的途径。