We propose a new method for accelerating the computation of a concurrency relation, that is all pairs of places in a Petri net that can be marked together. Our approach relies on a state space abstraction, that involves a mix between structural reductions and linear algebra, and a new data-structure that is specifically designed for our task. Our algorithms are implemented in a tool, called Kong, that we test on a large collection of models used during the 2020 edition of the Model Checking Contest. Our experiments show that the approach works well, even when a moderate amount of reductions applies.
翻译:我们提出了一种加速计算货币关系的新方法,即可以一起标注的Petri网中的所有位置。 我们的方法依赖于国家空间抽象,这涉及结构削减和线性代数的混合,以及专为我们的任务而设计的新的数据结构。 我们的算法是在一个名为Kong的工具中实施的,这个工具是我们测试在2020年版《示范测试竞赛》中使用的大量模型。 我们的实验表明,这个方法行之有效,即使有一定数量的削减也适用。