A major open question in fair allocation of indivisible items is whether there always exists an allocation of chores that is Pareto optimal (PO) and envy-free up to one item (EF1). We answer this question affirmatively for the natural class of bivalued utilities, where each agent partitions the chores into easy and difficult ones, and has cost $p > 1$ for chores that are difficult for her and cost $1$ for chores that are easy for her. Such an allocation can be found in polynomial time using an algorithm based on the Fisher market. We also show that for a slightly broader class of utilities, where each agent $i$ can have a potentially different integer $p_i$, an allocation that is maximin share fair (MMS) always exists and can be computed in polynomial time, provided that each $p_i$ is an integer. Our MMS arguments also hold when allocating goods instead of chores, and extend to another natural class of utilities, namely weakly lexicographic utilities.
翻译:在公平分配不可分割项目方面,一个主要的未决问题是,是否总有帕雷托最佳和无嫉妒的家务分配,最多一个项目(EF1),我们肯定地回答这个问题,这是对两价公用事业的自然等级,每一代理机构将家务分成简单和困难的一类,为她困难的家务花费1美元以上,为她容易从事的家务花费1美元以上。这种分配在多价时间内使用基于渔业市场的算法可以找到。我们还表明,对于略为扩大的公用事业类别,每个代理机构美元都可能有一个不同的整数$p_i美元,这种分配始终是最高份额公平(MMS)的,并且可以在多价时间内计算,条件是每1美元是整数。我们的MMS的论据在分配商品而不是杂务时,也支持将商品分配扩大到另一个自然的公用事业类别,即低价公用事业。