We study sufficient conditions for local asymptotic mixed normality. We weaken the sufficient conditions in Theorem 1 of Jeganathan (Sankhya Ser. A 1982) so that they can be applied to a wider class of statistical models including a jump-diffusion model. Moreover, we show that local asymptotic mixed normality of a statistical model generated by approximated transition density functions is implied for the original model. Together with density approximation by means of thresholding techniques, we show local asymptotic normality for a statistical model of discretely observed jump-diffusion processes where the drift coefficient, diffusion coefficient, and jump structure are parametrized. As a consequence, the quasi-maximum-likelihood and Bayes-type estimators proposed in Shimizu and Yoshida (Stat. Inference Stoch. Process. 2006) and Ogihara and Yoshida (Stat. Inference Stoch. Process. 2011) are shown to be asymptotically efficient in this model. Moreover, we can construct asymptotically uniformly most powerful tests for the parameters.
翻译:我们研究了当地零食性混合正常状态的充分条件。 我们削弱了热那那坦( Sankhya Ser. A 1982) 理论1 (Sankhya Ser. A. 1982) 的充分条件,以便将其应用于更广泛的统计模型类别,包括跳跃扩散模型。 此外,我们表明,原始模型隐含着由近似过渡密度函数产生的统计模型的局部零食性混合常态。与通过临界技术得出的密度近似值一起,我们展示了本地零食性常态,以图示离散观测的跳跃过程统计模型,其中漂移系数、扩散系数和跳跃结构是万能化的。结果,在Shimizu和Yoshida(Stat. Inference Stoch. proc. 2006)以及Ogihara和Yoshida(Stat. Inference. Stoch. proc. proc. 2011) 提出的准最高类似和海湾类型的估计值和海湾类型的估计值。结果显示,在这一模型中,我们可构建出无一丝可容力的最强的参数测试。