In this paper, we propose a leader-follower hierarchical strategy for two robots collaboratively transporting an object in a partially known environment with obstacles. Both robots sense the local surrounding environment and react to obstacles in their proximity. We consider no explicit communication, so the local environment information and the control actions are not shared between the robots. At any given time step, the leader solves a model predictive control (MPC) problem with its known set of obstacles and plans a feasible trajectory to complete the task. The follower estimates the inputs of the leader and uses a policy to assist the leader while reacting to obstacles in its proximity. The leader infers obstacles in the follower's vicinity by using the difference between the predicted and the real-time estimated follower control action. A method to switch the leader-follower roles is used to improve the control performance in tight environments. The efficacy of our approach is demonstrated with detailed comparisons to two alternative strategies, where it achieves the highest success rate, while completing the task fastest. See the link www.dropbox.com/s/hexadigqkvspaeh/IROS_Video.mp4?dl=0 for a descriptive video of the algorithm.


翻译:在本文中,我们为在部分已知的环境中合作运输物体的两个机器人提出了一个领导者-追随者等级战略。两个机器人都感知当地周围的环境,并对周围的障碍作出反应。我们认为没有明确的沟通,因此当地的环境信息和控制行动不会在机器人之间分享。在任何特定的时间步骤中,领导者用已知的一系列障碍来解决模型预测控制(MPC)问题,并计划完成这项任务的可行轨迹。追随者估计了领导者的投入,并使用一项政策协助领导者应对附近的障碍。领导者通过使用预测的和实时估计的跟踪控制行动之间的差别推断跟踪者周围的障碍。使用一种改变领导者-追随者作用的方法来提高紧凑环境中的控制性能。我们的方法的效力通过对两种替代战略的详细比较得到证明,即它取得最高的成功率,同时尽快完成任务。见www.doprobox.com/s/hexigqkvspaeh/IROS_Vide4d=0的视频描述性算法的链接。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
6+阅读 · 2018年12月3日
Arxiv
0+阅读 · 2021年9月26日
Arxiv
0+阅读 · 2021年9月23日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
6+阅读 · 2018年12月3日
Top
微信扫码咨询专知VIP会员