Efficient dynamic point cloud compression (DPCC) critically depends on accurate motion estimation and compensation. However, the inherently irregular structure and substantial local variations of point clouds make this task highly challenging. Existing approaches typically rely on explicit motion estimation, whose encoded motion vectors often fail to capture complex dynamics and inadequately exploit temporal correlations. To address these limitations, we propose a Bidirectional Feature-aligned Motion Transformation (Bi-FMT) framework that implicitly models motion in the feature space. Bi-FMT aligns features across both past and future frames to produce temporally consistent latent representations, which serve as predictive context in a conditional coding pipeline, forming a unified ``Motion + Conditional'' representation. Built upon this bidirectional feature alignment, we introduce a Cross-Transformer Refinement module (CTR) at the decoder side to adaptively refine locally aligned features. By modeling cross-frame dependencies with vector attention, CRT enhances local consistency and restores fine-grained spatial details that are often lost during motion alignment. Moreover, we design a Random Access (RA) reference strategy that treats the bidirectionally aligned features as conditional context, enabling frame-level parallel compression and eliminating the sequential encoding. Extensive experiments demonstrate that Bi-FMT surpasses D-DPCC and AdaDPCC in both compression efficiency and runtime, achieving BD-Rate reductions of 20% (D1) and 9.4% (D1), respectively.


翻译:高效动态点云压缩(DPCC)的关键在于精确的运动估计与补偿。然而,点云固有的不规则结构和显著的局部变化使得这一任务极具挑战性。现有方法通常依赖于显式运动估计,其编码的运动向量往往难以捕捉复杂动态,且未能充分利用时间相关性。为解决这些局限性,我们提出了一种双向特征对齐运动变换(Bi-FMT)框架,该框架在特征空间中隐式建模运动。Bi-FMT通过对齐过去与未来帧的特征,生成时间一致的潜在表示,这些表示在条件编码流水线中作为预测上下文,形成统一的“运动+条件”表示。基于此双向特征对齐机制,我们在解码端引入跨Transformer精化模块(CTR),自适应地精化局部对齐特征。通过向量注意力建模跨帧依赖关系,CTR增强了局部一致性,并恢复了在运动对齐过程中常丢失的细粒度空间细节。此外,我们设计了随机访问(RA)参考策略,将双向对齐特征视为条件上下文,实现帧级并行压缩并消除顺序编码需求。大量实验表明,Bi-FMT在压缩效率与运行时间上均超越D-DPCC与AdaDPCC,分别实现20%(D1)与9.4%(D1)的BD-Rate降低。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员