Fashion styles adopted every day are an important aspect of culture, and style trend analysis helps provide a deeper understanding of our societies and cultures. To analyze everyday fashion trends from the humanities perspective, we need a digital archive that includes images of what people wore in their daily lives over an extended period. In fashion research, building digital fashion image archives has attracted significant attention. However, the existing archives are not suitable for retrieving everyday fashion trends. In addition, to interpret how the trends emerge, we need non-fashion data sources relevant to why and how people choose fashion. In this study, we created a new fashion image archive called Chronicle Archive of Tokyo Street Fashion (CAT STREET) based on a review of the limitations in the existing digital fashion archives. CAT STREET includes images showing the clothing people wore in their daily lives during the period 1970--2017, which contain timestamps and street location annotations. We applied machine learning to CAT STREET and found two types of fashion trend patterns. Then, we demonstrated how magazine archives help us interpret how trend patterns emerge. These empirical analyses show our approach's potential to discover new perspectives to promote an understanding of our societies and cultures through fashion embedded in consumers' daily lives.


翻译:每天采用的时装风格是文化的一个重要方面,时装趋势分析有助于更深入地了解我们的社会和文化。为了从人文角度分析日常时装趋势,我们需要一个数字档案,其中包括人们在很长一段时间的日常生活中所穿的图像。在时装研究中,建立数字时装图像档案引起了极大关注。然而,现有的档案并不适合于检索日常时装趋势。此外,为了解释趋势如何出现,我们需要与人们选择时装的原因和方式相关的非时装数据源。在这个研究中,我们创建了一个新的时装图像档案,名为东京街时装纪事档案(CAT STREET),它基于对现有数字时装档案的局限性的回顾。CAT STREET包含人们在1970至2017年期间日常生活中所穿的服装的图像,其中包括时装标志和街道位置说明。我们应用机器学习CAT STREET, 发现了两种时装趋势模式。然后,我们展示了杂志档案如何帮助我们解释趋势模式的形成。这些实证分析显示了我们从日常生活中探索新观点的方法,通过消费者的日常生活和文化促进新认识。

0
下载
关闭预览

相关内容

【微软】自动机器学习系统,70页ppt
专知会员服务
69+阅读 · 2021年6月28日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关VIP内容
【微软】自动机器学习系统,70页ppt
专知会员服务
69+阅读 · 2021年6月28日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员